
Lecture 10
Reverse engineering 3: debugging and anti

● Reverse Engineering HLL programs
● AntiDbg: Debugger detection methods
● AntiAntiDbg: Anti-debugger detection methods (+exercise)
● Packers: Packing binaries to save space & make analysis harder
● Unpackers: Unpacking binaries to make analysis easier (+exercise)
● Generic RE: common algorithms (+exercise)
● Exceptions under the hood (+exercise)

Today

HLL Programs
Note: In this context, C is a "High Level Language"

GCC Prologue

MinGW Prologue

if

memory[ebp-25] = [ebp+8] == 3;

if (memory[ebp+8] == 4) {

 // 8048833

} else if (memory[ebp+8] == 3) {

 // 8048833

} else {

 usage(...);

}

for

for (int i = 0; i < 10; i++) {

 printf("%d", i);

}

functions

void function(int a) {

// 0x28 bytes on stack reserved

a == 3;

}

AntiDbg

● WinAPI features and “features”
● Thread/Process internals
● Time-based checks
● OEP obfuscation
● Trap detection
● Attach prevention
● Exploiting debugger vulns and bugs
● ...

Techniques

BOOL WINAPI IsDebuggerPresent(void);

BOOL WINAPI CheckRemoteDebuggerPresent(

 In HANDLE hProcess,

 Inout PBOOL pbDebuggerPresent

);

WinAPI features

NtSetInformationThread(

GetCurrentThread(),

0x11, // ThreadHideFromDebugger

0, 0);

NtQueryInformationProcess(

 ...,

 0x07, // ProcessDebugPort

 ...)

WinAPI features

void WINAPI OutputDebugString(

 _In_opt_ LPCTSTR lpOutputString

);

● “Silently” fails if debugger is not attached (GLE set)

WinAPI “features”

● FindWindow
● CreateToolhelp32Snapshot
● CreateFile

Looking for debugger

Process Internals

Win32 Thread Information Block (TIB)

FS:[0x00] Current Structured Exception Handling (SEH) frame

FS:[0x18] Linear address of TEB

FS:[0x30] Linear address of Process Environment Block (PEB)

Process Environment Block (PEB)
mov eax, fs:[0x30]

typedef struct _PEB
{
 // ...
 UCHAR BeingDebugged;
 // ...
 PVOID ProcessHeap;
 // ...
 ULONG NtGlobalFlag;

 // ...
} PEB, *PPEB;

Time based

Time-based dbg detection

Time-based dbg detection

● GetLocalTime
● GetSystemTime
● GetTickCount
● QueryPerformanceCounter
● ….
● RDPMC/RDTSC instructions

Time-based dbg detection

OEP obfuscation
(TLS callback)

Main entrypoint

- RVA of entry point defined in PE Optional
Header

.tls section

- .tls section contains informations about static
Thread Local Storage

TLS callbacks

- Address of Callbacks field points to null-terminated
array of TLS callback function pointers

- Default: break at
WinMain or PE
entry point

- We can choose
pausing on TLS
callback in Options

OllyDbg & TLS callbacks

- IDA Pro is able to
locate additional entry
points in loaded file

- We can jump to
specified entry point
using CTRL+E

IDA Pro

Trap detection

● Software breakpoint (SW BP)
● Hardware breakpoint (HW BP)
● Single-step mode

Types of breakpoints

● Debugger temporarily inserts 0xCC byte at breakpoint
target

● When bp is reached: dbg restores original byte.
● 0xCC - opcode for INT 3h instruction

○ INT xx - Call to INTerrupt procedure

Software breakpoints

Software breakpoints

● Breakpoints handled internally by CPU
● In x86 limited to 4 breakpoints
● We can set HW breakpoints on:

○ code (on execute)
○ memory (on access, on write)

Hardware breakpoints

● Special set of x86 registers:
○ DR0-DR3 - linear addresses of breakpoints (max 4)
○ DR6 - debug status (which breakpoints were fired)
○ DR7 - debug control, specifies breakpoint condition

(on read/write/execute)

Hardware breakpoints

Single-step mode
FLAGS register

Detection techniques

● Spawn another thread/process, which periodically looks
for 0xCC or evaluates checksum of monitored block (e.g.
CRC32)

● Effective against patching or software breakpoints

Memory scan

● MOV instructions from/to DRx are privileged
● We’re allowed to access debug registers from ring3 via

GetThreadContext/SetThreadContext

BOOL WINAPI GetThreadContext(

 In HANDLE hThread,

 Inout LPCONTEXT lpContext

);

Checking debug registers

Exception-driven
control flow

● Usually exceptions in debugged code occurs, when
something bad happens:
○ Access violation
○ Division by zero
○ Hardcoded breakpoint

Structured Exception Handling

● SEH - linked list of handler pointers
● When exception occurs: each handler is executed (in

order), until one will handle exception.
● If reached end of list (0xFFFFFFFF) - exception is

passed to system handler (which usually terminates
application)

Structured Exception Handling

Registering exception handler (start of try block)
push ExceptionHandler
push fs:[0]
mov [fs],esp

Unregistering exception handler (end of try block)
mov eax,[esp]
mov fs:[0],eax
add esp,8

Structured Exception Handling

int main()
{
 int* p = 0x00000000; // pointer to NULL

 __try
 {
 *p = 13; // causes an access violation exception
 } __except(filter(GetExceptionCode(), GetExceptionInformation()))
 {
 puts("Something went wrong!\n");
 }
}

Structured Exception Handling

int filter(unsigned int code, struct _EXCEPTION_POINTERS *ep)
{
 if (code == EXCEPTION_ACCESS_VIOLATION)
 {
 // caught ACCESSV
 return EXCEPTION_EXECUTE_HANDLER;
 }
 // Something else.. not interested
 return EXCEPTION_CONTINUE_SEARCH;
}

Structured Exception Handling

● Debugger usually tries to handle exception on its own,
bypassing SEH chain

● Correct flow control may rely on SEH callbacks
● Debuggers usually ask how to handle exception:

○ OllyDbg - Shift+F9 “pass to application”
○ IDA Pro shows dialog box

Structured Exception Handling

Structured Exception Handling

Attach prevention

● You can't be debugged, if you “debug yourself”
● Create another process which will attach to its parent.

Both processes could also monitor each other, to
prevent detach without termination.

Self-debug

● DebugActiveProcess internally creates remote thread in
debuggee context with ntdll::DbgUiRemoteBreakin as
entrypoint.

● Antidbg: hook DbgUiRemoteBreakin and pass call to
ExitProcess

● NtContinue also can be hooked this way.

Attach side-effects

● OllyDbg OutputDebugString format string bug
● OllyDbg export name buffer overflow
● CVE-2011-1051: Integer overflow in the

COFF/EPOC/EXPLOAD input file loaders in Hex-Rays
IDA Pro 5.7 and 6.0

Debugger bugs and vulns

AntiAntiDbg

Patching, patching, patching...

Patching, patching, patching...
Patch IsDebuggerPresent

Patching, patching, patching...
Patch PEB.BeingDebugged

● User-mode sometimes isn’t enough:
○ e.g. RDTSC interception needs access to Control

Registers and IDT hooking (ring0)
● Anti-debug checkups are usually obfuscated

Sometimes patching isn’t enough

● Phantom
● ScyllaHide/TitanHide

OllyDbg anti-anti-debug plugins

Exercise 0x1
- Found nice flag generator, but also need a

password.
- I’ve tried some debugging, but it doesn’t work.
- Can you help me?

http://uw2017.p4.team/static/flaggen.exe

http://uw2017.p4.team/static/flaggen.exe
http://uw2017.p4.team/static/flaggen.exe

Packers

- Normal program
- Has entry point (in PE header)

and rest of it's code
- Everything visible "in plain

sight"
- Standard output of any

compiler

Packers?

- Real program is
stored in
compressed form

- Not a security
measure per se, but
makes static
analysis impossible

Packers

- Common packers:
- UPX
- FSG
- AsPack

Packers

- Real program is
stored in
compressed and
encrypted form

- Goal: make RE as
difficult as possible

Protectors

- Common protectors:
- Enigma
- VmProtect
- AsProtect

Protectors

Unpackers

Unpacking?

Unpacking?

Unpacking?

- Generic automatic unpacker (eg. cuckoo).
- Google: X unpacker version Y
- Google: X unpacking script
- Google: X unpacker
- Google: X manual unpacking
- Last resort: unpacking by hand

How to unpack X

General technique:
- Find decompression code
- Find jump to OEP after it
- Breakpoint on jump/call

Unpacking manually

- General technique: find OEP
- Dump
- Fix imports
- Reverse engineer

jmp reg / call reg / ret

Unpacking manually

Unpacking manually

Unpacking manually
- Set correct OEP (usually

EIP == OEP)
- Usually address and size is

correct, but you might want
to verify

- Don't rebuild IAT (usually
fails)

- Dump

Unpacking manually
-- Attach to running process
- Fill "IAT infos needed"
- Click "Get Imports"
- Cross fingers (optional)

Exercise 0x2
- Great computer game!
- Unfortunately, needs a license file
- But you can patch executable
- Unfortunately, executable is packed
- Goal: runnable game without license

http://uw2017.p4.team/static/game.exe

http://uw2017.p4.team/static/game.exe
http://uw2017.p4.team/static/game.exe

Exercise 0x2: hints
- Hint 0x0: don't try to reverse engineer packer,

just find jump to EP.
- Hint 0x1: one of the first instructions is pushad.

So one of the last instructions will be ...?
- Hint 0x2 (optional): usually OEP == first jump to

different code section.

Exercise 0x2: solution

Entry point

Algorithm REconstruction

Actually reverse-engineering something

Exercise 0x3
- We are given flag right away
- Unfortunately, it's encrypted
- But we have encryptor and password
- Unfortunately, decryption is not implemented
- Goal: decrypt the flag (password = secret1234)

http://uw2017.p4.team/static/encryptor.exe

http://uw2017.p4.team/static/flag.enc

http://uw2017.p4.team/static/encryptor.exe
http://uw2017.p4.team/static/encryptor.exe
http://uw2017.p4.team/static/flag.enc
http://uw2017.p4.team/static/flag.enc

Exercise 0x3: hints 0
- Don't RE too much
- Important thing: find encryption function
- Somewhere in program find loop ~~ this:

while (something) {

 fread(buffer, ...);

 encrypt(buffer, ...);

 fwrite(buffer, ...);

}

Exercise 0x3: hints 1

real_main(..., ..., encrypt);

Exercise 0x3: hints 2
// whatever

// whatever

// whatever

// whatever

for (int i = 0; i < xxx; i++) {

 // real encryption!

}

// whatever

// whatever

// whatever

Exercise 0x3: hints 3
eax = next_byte

esi = eax

eax = whatever()

eax ^= esi

edx = eax

eax = [ebp-272] + edx

out_byte = eax

[ebp-272] += 1

[ebp-272] == loop variable!

Exercise 0x3: hints 3
esi = next_byte

edx = whatever() ^ esi

eax = [ebp-272] + edx

out_byte = eax

[ebp-272] += 1

[ebp-272] == loop variable!

Exercise 0x3: hints 3
out_byte = [ebp-272] + whatever() ^ next_byte

[ebp-272] += 1

[ebp-272] == loop variable!

Exercise 0x3: solution
void rc4keysched(unsigned char state[], const uint8_t *key, size_t len) {

 for (int i = 0; i < 256; ++i) {

 state[i] = i;

 }

 int j = 0;

 for (int i = 0; i < 256; ++i) {

 j = (j + state[i] + key[i % len]) % 256;

 int t = state[i];

 state[i] = state[j];

 state[j] = t;

 }

}

char rc4rand(unsigned char state[], int *i, int *j) {

 *i = (*i + 1) % 256;

 *j = (*j + state[*i]) % 256;

 int t = state[*i];

 state[*i] = state[*j];

 state[*j] = t;

 return state[(state[*i] + state[*j]) % 256];

}

Standard RC4
stream cipher used

(bonus points if you
figured that out)

Exercise 0x3: solution
void encrypt(uint8_t *data, size_t data_size, const uint8_t *key, size_t

key_size) {

 unsigned char state[256];

 rc4keysched(state, key, key_size);

 int a = 0, b = 0;

 for (int i = 0; i < (int)data_size; i++) {

 data[i] = (data[i] ^ rc4rand(state, &a, &b)) + i;

 }

}

void decrypt(uint8_t *data, size_t data_size, const uint8_t *key, size_t

key_size) {

 unsigned char state[256];

 rc4keysched(state, key, key_size);

 int a = 0, b = 0;

 for (int i = 0; i < (int)data_size; i++) {

 data[i] = (data[i] - i) ^ rc4rand(state, &a, &b);

 }

}

..but recognising
RC4 is not
necessary

Encryption is
almost symmetric

Exercise 0x3: solution
Expected solutions:
- Python/ruby/(...) script
- Patching few bytes in executable

Unexpected solutions:
- Ecsm2016
- More?

Bibliography

"Praktyczna inżynieria wsteczna" - Mateusz Jurczyk, Gynvael Coldwind

"Reversing: Secrets of Reverse Engineering" - Eldad Eilam

"Practical Reverse Engineering: x86" - Alexandre Gazet, Bruce Dang, and Elias
Bachaalany

