
Security first mindset

In practice

Jarosław Jedynak

Security first
mindset in practice

Plans for today

Michał Leszczyński

OWASP 10
2025 Playthrough

Michał Kowalczyk

CTFs, security
teaching and our
hacking projects

And others

Security Engineer

“Expert”

About me

Reverse Engineer

Cybersecurity Auditor

And others

Security Engineer

“Expert”

About me

Reverse Engineer

Cybersecurity Auditor

And others

Security Engineer

“Expert”

About me

Reverse Engineer

Cybersecurity Auditor

And others

Security Engineer

“Expert”

About me

Reverse Engineer

Cybersecurity Auditor

And others

Security Engineer

“Expert”

About me

Reverse Engineer

Cybersecurity Auditor

(Simplified) Agenda for today

1. Introduction 2. Principles 3. Conclusion

Part 1
Security-first what?

Low standards, high standards

✅ Frontal Impact (~50km/h)

Low standards, high standards

✅ Frontal Impact (~50km/h)

✅ Potholes on a country road

Low standards, high standards

✅ Frontal Impact (~50km/h)

✅ Potholes on a country road

✅ Thief breaking in overnight

Low standards, high standards

❌ Anti-tank guided missile

Low standards, high standards

❌ Anti-tank guided missile

❌ Police roadblock

Low standards, high standards

❌ Anti-tank guided missile

❌ Police roadblock

❌ Assassin with a sniper rifle

Real world

❌ Anti-tank guided missile

❌ Police roadblock

❌ Assassin with a sniper rifle

✅ Frontal Impact (~50km/h)

✅ Potholes on a country road

✅ Thief breaking in overnight

Real world

❌ Anti-tank guided missile

❌ Police roadblock

❌ Assassin with a sniper rifle

✅ Potholes on a country road

✅ Thief breaking in overnight

✅ Accidental mistake

Real world

❌ Anti-tank guided missile

❌ Police roadblock

❌ Assassin with a sniper rifle✅ Thief breaking in overnight

✅ Accidental mistake

✅ External issues

Real world

❌ Anti-tank guided missile

❌ Police roadblock

❌ Assassin with a sniper rifle

✅ Accidental mistake

✅ External issues

✅ Common criminals

Real world

❌ Police roadblock

❌ Assassin with a sniper rifle

✅ Accidental mistake

✅ External issues

✅ Common criminals

❌ Military attack

Real world

❌ Assassin with a sniper rifle

✅ Accidental mistake

✅ External issues

✅ Common criminals

❌ Military attack

❌ Nation state

Real world

❌ Military attack

❌ Nation state

❌ Crime syndicate

✅ Accidental mistake

✅ External issues

✅ Common criminals

IT world

☑ APT Group✅ Accidental mistake

✅ External issues

✅ Common criminals

❌ Nation state

❌ Crime syndicate

IT world

☑ APT Group

☑ Intelligence agency

✅ Accidental mistake

✅ External issues

✅ Common criminals ❌ Crime syndicate

IT world

☑ APT Group

☑ Intelligence agency

✅ Accidental mistake

✅ External issues

✅ Common criminals ☑ Crime syndicate

IT world

☑ APT Group

☑ Intelligence agency

☑ Crime syndicate

Once upon a time in the cyberspace

● ByBit Cryptocurrency exchange
● Funds stored in a cold wallet a multisig solution called Safe{Wallet}
● But then one day…

Once upon a time in the cyberspace

Routine rebalancing starts in ByBit

Once upon a time in the cyberspace

Routine rebalancing starts in ByBit

Multisig transaction approved

Once upon a time in the cyberspace

Routine rebalancing starts in ByBit

Multisig transaction approved

ByBit notices $1.5B is gone

Once upon a time in the cyberspace

Routine rebalancing starts in ByBit

Multisig transaction approved

ByBit Funds were diverted to attacker wallet

ByBit notices $1.5B is gone

Once upon a time in the cyberspace

Routine rebalancing starts in ByBit

Multisig transaction approved.
But what people saw was not what they signed.

ByBit Funds were diverted to attacker wallet

ByBit notices $1.5B is gone

But why? Somehow Safe{Wallet} UI lied to them.

Once upon a time in the cyberspace

Malicious transaction is initiated in ByBit
(instead of expected scheduled transaction)

Multisig transaction approved.
But what people saw was not what they signed.

ByBit Funds were diverted to attacker wallet

ByBit notices $1.5B is gone

Technical detail: ETH delegatecall exploit was used

Or rather: attackers took over the smart contract

But why? Somehow Safe{Wallet} UI lied to them.

Once upon a time in the cyberspace

app.safe.global JS
replaced with malicious code

Malicious transaction is initiated in ByBit
(instead of expected scheduled transaction)

Multisig transaction approved.
But what people saw was not what they signed.

ByBit Funds were diverted to attacker wallet

ByBit notices $1.5B is gone

We know thanks to forensics and Google cache

Even though the JS was replaced back soon later.

Technical detail: ETH delegatecall exploit was used

Or rather: attackers took over the smart contract

But why? Somehow Safe{Wallet} UI lied to them.

Once upon a time in the cyberspace

app.safe.global JS
replaced with malicious code

Malicious transaction is initiated in ByBit
(instead of expected scheduled transaction)

Multisig transaction approved.
But what people saw was not what they signed.

ByBit Funds were diverted to attacker wallet

ByBit notices $1.5B is gone

Safe{Wallet} developer compromised (Likely s3 or CloudFront keys leaked)

We know thanks to forensics and Google cache

Even though the JS was replaced back soon later.

Technical detail: ETH delegatecall exploit was used

Or rather: attackers took over the smart contract

But why? Somehow Safe{Wallet} UI lied to them.

Once upon a time in the cyberspace

app.safe.global JS
replaced with malicious code

Malicious transaction is initiated in ByBit
(instead of expected scheduled transaction)

Multisig transaction approved.
But what people saw was not what they signed.

ByBit Funds were diverted to attacker wallet

ByBit notices $1.5B is gone

Safe{Wallet} developer compromised

Part 2
Security-first mindset in practice

A security-first mindset is
an approach where security
is treated as a core priority
from the very beginning, not
something added on later. It
means consistently asking
“How could this be abused
or fail?” at every decision

point.

Build and operate systems assuming they will be attacked, misused, or fail.

Agenda

Introduction

Agenda

Threat ModellingIntroduction

Agenda

Defense in Depth

Security through
obscurity

Threat ModellingIntroduction

Agenda

Privilege escalation

Defense in Depth

Security through
obscurity

Principle of Least
Privilege

Threat ModellingIntroduction

Agenda

Privilege escalation

Defense in Depth

Security through
obscurity

Secure Defaults

Principle of Least
Privilege

Threat ModellingIntroduction

Agenda

Privilege escalation

Defense in Depth

Security through
obscurity

Secure Defaults

Principle of Least
Privilege

Threat ModellingIntroduction

Conclusion

Threat Modelling

Threat Modelling

theoretical approach

Threat Modelling

What to protect? From whom? How to attack it?

Threat Modelling

Attack vectors Protected assets

Threat Modelling

Attack vectors Protected assets

User Data

Bank Account

Databases

Reputation

Threat Modelling

Attack vectors Protected assets

User Data

Bank Account

Databases

Company website

Supply-Chain

Email

Insider threat Reputation

● Publicly exposed, vulnerable website

Threat example

● Publicly exposed, vulnerable website
● Website exploited, RCE obtained =>

○ Deface
○ Cryptominer
○ Proxy
○ Limited data leak

Threat example

● Publicly exposed, vulnerable website
● Website exploited, RCE obtained =>

○ Deface
○ Cryptominer
○ Proxy
○ Limited data leak

● Attacker gains access to the intranet =>
○ Severe data leak (internal shares, emails)
○ Privilege escalation opportunities

Threat example

● Publicly exposed, vulnerable website
● Website exploited, RCE obtained =>

○ Deface
○ Cryptominer
○ Proxy
○ Limited data leak

● Attacker gains access to the intranet =>
○ Severe data leak (internal shares, emails)
○ Privilege escalation opportunities

● DC server exploited, Domain Admin account obtained =>
○ Leak of all confidential data
○ All data ransomwared

Threat example

Defense in Depth

Defense in depth

“DC is an unpatched Windows Server 2008.”

Defense in depth

“DC is an unpatched Windows Server 2008.”

(no reaction)

Defense in depth

“DC is an unpatched Windows Server 2008.”

(no reaction)

“This is a critical security issue.”

Defense in depth

“DC is an unpatched Windows Server 2008.”

(no reaction)

“This is a critical security issue.”

???

Defense in depth

“DC is an unpatched Windows Server 2008.”

(no reaction)

“This is a critical security issue.”

???

“But it’s intranet”

Defense in depth

“DC is an unpatched Windows Server 2008.”

(no reaction)

“This is a critical security issue.”

???

“But it’s intranet”

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”
● Works great

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”
● Works great until:

○ One of employees installs a RAT (Remote Access Trojan)

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”
● Works great until:

○ One of employees installs a RAT (Remote Access Trojan)
■ Or a stealer

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”
● Works great until:

○ One of employees installs a RAT (Remote Access Trojan)
■ Or a stealer
■ Or “Free VPN” software

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”
● Works great until:

○ One of employees installs a RAT (Remote Access Trojan)
■ Or a stealer
■ Or “Free VPN” software
■ Or a compromised development tool/library

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”
● Works great until:

○ One of employees installs a RAT (Remote Access Trojan)
■ Or a stealer
■ Or “Free VPN” software
■ Or a compromised development tool/library

○ Someone exploits company website hosted in the intranet

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”
● Works great until:

○ One of employees installs a RAT (Remote Access Trojan)
■ Or a stealer
■ Or “Free VPN” software
■ Or a compromised development tool/library

○ Someone exploits company website hosted in the intranet
○ Admin accidentally misconfigures the firewall

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”
● Works great until:

○ One of employees installs a RAT (Remote Access Trojan)
■ Or a stealer
■ Or “Free VPN” software
■ Or a compromised development tool/library

○ Someone exploits company website hosted in the intranet
○ Admin accidentally misconfigures the firewall
○ One of employees goes rogue

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”
● Works great until:

○ One of employees installs a RAT (Remote Access Trojan)
■ Or a stealer
■ Or “Free VPN” software
■ Or a compromised development tool/library

○ Someone exploits company website hosted in the intranet
○ Admin accidentally misconfigures the firewall
○ One of employees goes rogue

● The opposite is “Zero Trust” btw

Defense in depth
“But it’s intranet”

● Also known as “perimeter based security”
● Works great until:

○ One of employees installs a RAT (Remote Access Trojan)
■ Or a stealer
■ Or “Free VPN” software
■ Or a compromised development tool/library

○ Someone exploits company website hosted in the intranet
○ Admin accidentally misconfigures the firewall
○ One of employees goes rogue

● The opposite is “Zero Trust” btw

Defense in depth case study
● Security audit for an accounting company
● Several domain-specific programs preinstalled for everyone

Defense in depth: Asseco Płatnik

Defense in depth: Asseco Płatnik

/api/user/login API endpoint

Defense in depth: Asseco Płatnik

/api/user/login API endpoint

Defense in depth: Asseco Płatnik

HKLM\Software\Wow6432Node\Asseco Poland SA\Płatnik\10.02.002\Baza

Asseco’s genius idea
Instead of API, just read the correct

password from the database
and compare with user input

Defense in depth: Asseco Płatnik

HKLM\Software\Wow6432Node\Asseco Poland SA\Płatnik\10.02.002\Baza

Asseco’s genius idea
Instead of API, just read the correct

password from the database
and compare with user input

Problem: Everyone can read the DB pass

Defense in depth: Asseco Płatnik

HKLM\Software\Wow6432Node\Asseco Poland SA\Płatnik\10.02.002\Baza

Asseco’s genius idea
Instead of API, just read the correct

password from the database
and compare with user input Solution: Encrypt the password

Problem: Everyone can read the DB pass

Defense in depth: Asseco Płatnik

HKLM\Software\Wow6432Node\Asseco Poland SA\Płatnik\10.02.002\Baza

Asseco’s genius idea
Instead of API, just read the correct

password from the database
and compare with user input Solution: Encrypt the password

Problem: Everyone can read the DB pass

Defense in depth: Asseco Płatnik

HKLM\Software\Wow6432Node\Asseco Poland SA\Płatnik\10.02.002\Baza

Asseco’s genius idea
Instead of API, just read the correct

password from the database
and compare with user input Solution: Encrypt the password

Problem: Everyone can read the DB pass

❓❓❓ ❓

Defense in depth: Asseco Płatnik

HKLM\Software\Wow6432Node\Asseco Poland SA\Płatnik\10.02.002\Baza

sub swap($$) { $_ = shift; my $n = shift; s/(.{$n})(.{$n})/$2$1/g; return $_; }

my $enc = shift;
my $k = "lmnopqrstuvwxyz{";
my @pkey = (swap($k, 8), swap(swap($k, 4), 1), swap(swap($k, 8), 1), swap($k, 1),
 swap($k, 4), swap($k, 2), swap(swap($k, 2), 1), swap(swap(swap($k, 4), 2), 1),);
my @order = (0,1,2,3,4,0,3,5,2,1,5,4,3,6,6,2,4,2,2,4,3,2,7,7,);

my $i = 0;
sub dec($$) {
 my $a = index $pkey[$order[$i % 24]], shift;
 my $b = index $pkey[$order[$i % 24]], shift;
 $i++;
 return chr hex sprintf "%x%x",$b,$a;
}

$enc =~ s/[^$k]//g; $enc =~ s/(.)(.)/dec($1,$2)/ge;
print "$enc\n";

Defense in depth: Asseco Płatnik

Defense in depth: Asseco Płatnik

🤡

“Security last mindset”

● User needs to use the program
● Program need to know the password to connect to the database
● 2 + 2 = 4

“Security last mindset”

● User needs to use the program
● Program need to know the password to connect to the database
● 2 + 2 = 4

● User knows password to some database user
● Database user must have access to "Users" table
● 2 + 2 = 4

“Security last mindset”

● User needs to use the program
● Program need to know the password to connect to the database
● 2 + 2 = 4

● User knows password to some database user
● Database user must have access to "Users" table
● 2 + 2 = 4

● Passwords in the database are "encrypted"
● ???
● So called "security through obscurity"

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation
● Non-standard SSH port

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation
● Non-standard SSH port
● http://my-company.com/admin-login-1a2f3f/

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation
● Non-standard SSH port
● http://my-company.com/admin-login-1a2f3f/
● Undocumented REST endpoints

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation
● Non-standard SSH port
● http://my-company.com/admin-login-1a2f3f/
● Undocumented REST endpoints
● C:\Users\Jarek\Desktop\old\backup\taxes2013\Hot MILF Sex.mp4
● Polish itsec meme: "głębokie ukrycie" ("deep hiding"?)

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation
● Non-standard SSH port
● http://my-company.com/admin-login-1a2f3f/
● Undocumented REST endpoints
● C:\Users\Jarek\Desktop\old\backup\taxes2013\Hot MILF Sex.mp4
● Polish itsec meme: "głębokie ukrycie" ("deep hiding"?)

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation
● Non-standard SSH port
● http://my-company.com/admin-login-1a2f3f/
● Undocumented REST endpoints
● C:\Users\Jarek\Desktop\old\backup\taxes2013\Hot MILF Sex.mp4
● Polish itsec meme: "głębokie ukrycie" ("deep hiding"?)

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation
● Non-standard SSH port
● http://my-company.com/admin-login-1a2f3f/
● Undocumented REST endpoints
● Certificate pinning

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation
● Non-standard SSH port
● http://my-company.com/admin-login-1a2f3f/
● Undocumented REST endpoints
● Certificate pinning
● C:\Users\Jarek\Desktop\old\backup\taxes2013\Hot MILF Sex.mp4

Security through obscurity

● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation
● Non-standard SSH port
● http://my-company.com/admin-login-1a2f3f/
● Undocumented REST endpoints
● Certificate pinning
● C:\Users\Jarek\Desktop\old\backup\taxes2013\Hot MILF Sex.mp4
● Old polish ITSec meme: "głębokie ukrycie" ("deep hiding"?)

Security through obscurity

Devil’s advocate: How bad is that, really?

Security through obscurity

● Various kinds of obfuscation (⏰)
○ Waste reverse-engineer time
○ Stop less skilled attackers

Security through obscurity

● Various kinds of obfuscation (⏰)
● Non-standard SSH port (🤖)

○ Defeat automated scanners
○ Avoid immediate exploit in case of a critical CVE
○ Same goes for VPN and other critical publicly open services

Security through obscurity

● Various kinds of obfuscation (⏰)
● Non-standard SSH port (🤖)
● http://my-company.com/admin-login-1a2f3f/ (🤖)

○ Especially good when used with wordpress
○ But not necessarily for custom projects and APIs

Security through obscurity

● Various kinds of obfuscation (⏰)
● Non-standard SSH port (🤖)
● http://my-company.com/admin-login-1a2f3f/ (🤖)
● Certificate pinning (⏰🤖)

○ Waste reverse-engineer time
○ Defeat automated sandboxes
○ Stop less skilled attackers

Security through obscurity

● Various kinds of obfuscation (⏰)
● Non-standard SSH port (🤖)
● http://my-company.com/admin-login-1a2f3f/ (🤖)
● Certificate pinning (⏰🤖)

Sometimes acceptable.
But not as the only security measure, and be aware of the tradeoffs.

Security through obscurity

Privilege escalation

Privilege escalation

Asseco Płatnik user Database user Database admin

Security barrier breached

Least privileged ---> ---> Most privileged

Defense in depth: Asseco Płatnik

C:\Program Files (x86)\Asseco Poland SA\Platnik\ASSECO.AKTUALIZUJ.PP.exe

Defense in depth: Asseco Płatnik

C:\Program Files (x86)\Asseco Poland SA\Platnik\ASSECO.AKTUALIZUJ.PP.exe: Writable

Defense in depth: Asseco Płatnik

C:\Program Files (x86)\Asseco Poland SA\Platnik\ASSECO.AKTUALIZUJ.PP.exe: Writable

AktualizujPP Windows Service

Defense in depth: Asseco Płatnik

C:\Program Files (x86)\Asseco Poland SA\Platnik\ASSECO.AKTUALIZUJ.PP.exe: Writable

AktualizujPP Windows Service: Executed as SYSTEM user

Defense in depth: Asseco Płatnik

C:\Program Files (x86)\Asseco Poland SA\Platnik\ASSECO.AKTUALIZUJ.PP.exe: Writable

AktualizujPP Windows Service: Executed as SYSTEM user

Defense in depth: Asseco Płatnik

C:\Program Files (x86)\Asseco Poland SA\Platnik\ASSECO.AKTUALIZUJ.PP.exe: Writable

AktualizujPP Windows Service: Executed as SYSTEM user

>runas /user:JaroslawJedynak cmd.exe

>powershell -Command "Start-Process cmd
-Verb RunAs"

Defense in depth: Asseco Płatnik

C:\Program Files (x86)\Asseco Poland SA\Platnik\ASSECO.AKTUALIZUJ.PP.exe: Writable

AktualizujPP Windows Service: Executed as SYSTEM user

>runas /user:JaroslawJedynak cmd.exe

>powershell -Command "Start-Process cmd
-Verb RunAs"

Privilege escalation

Windows user SYSTEM user Domain Admin

Security barrier breached

Least privileged ---> ---> Most privileged

Privilege escalation

Privilege escalation

Privilege escalation

🤡

Privilege escalation

🤡

Privilege escalation

No security barrier breached

Linux user Linux user

Privilege escalation

Privilege escalation

Privilege escalation

Privilege escalation

Privilege escalation

"John" Windows user "DbAdm" Window user Domain Admin

"SYSTEM" Windows user "web" database user "admin" database user

"root" server user "www-data" server user "John" email account

Privilege escalation

RCE vulnerability

"www-data" server user

"web" database user "admin" database user

"DbAdm" Window user

"root" server user

"SYSTEM" Windows userDomain Admin "John" Windows user

Especially dangerous - entities that hold keys to many kingdoms
● Developers, Admins, DevOps
● CI pipelines💀
● CI servers💀💀💀

Privilege escalation

Especially dangerous - entities that hold keys to many kingdoms
● Developers, Admins, DevOps
● CI pipelines💀
● CI servers💀💀💀

Fun family game:

Privilege escalation

Especially dangerous - entities that hold keys to many kingdoms
● Developers, Admins, DevOps
● CI pipelines💀
● CI servers💀💀💀

Fun family game:
● Imagine a thing at work you don’t have permission to

○ For example, production deploy

Privilege escalation

Especially dangerous - entities that hold keys to many kingdoms
● Developers, Admins, DevOps
● CI pipelines💀
● CI servers💀💀💀

Fun family game:
● Imagine a thing at work you don’t have permission to

○ For example, production deploy
● Find a way to do this thing anyway

Privilege escalation

Especially dangerous - entities that hold keys to many kingdoms
● Developers, Admins, DevOps
● CI pipelines💀
● CI servers💀💀💀

Fun family game:
● Imagine a thing at work you don’t have permission to

○ For example, production deploy
● Find a way to do this thing anyway

○ Forgotten legacy token or password stored somewhere?

Privilege escalation

Especially dangerous - entities that hold keys to many kingdoms
● Developers, Admins, DevOps
● CI pipelines💀
● CI servers💀💀💀

Fun family game:
● Imagine a thing at work you don’t have permission to

○ For example, production deploy
● Find a way to do this thing anyway

○ Forgotten legacy token or password stored somewhere?
○ Old secret committed and removed from git?

Privilege escalation

Especially dangerous - entities that hold keys to many kingdoms
● Developers, Admins, DevOps
● CI pipelines💀
● CI servers💀💀💀

Fun family game:
● Imagine a thing at work you don’t have permission to

○ For example, production deploy
● Find a way to do this thing anyway

○ Forgotten legacy token or password stored somewhere?
○ Old secret committed and removed from git?
○ Abuse CI pipeline (replace repo with a backdoor)?

Privilege escalation

Especially dangerous - entities that hold keys to many kingdoms
● Developers, Admins, DevOps
● CI pipelines💀
● CI servers💀💀💀

Fun family game:
● Imagine a thing at work you don’t have permission to

○ For example, production deploy
● Find a way to do this thing anyway

○ Forgotten legacy token or password stored somewhere?
○ Old secret committed and removed from git?
○ Abuse CI pipeline (replace repo with a backdoor)?

● (Don’t really do the thing though, you may be fired)

Privilege escalation

Especially dangerous - entities that hold keys to many kingdoms
● Developers, Admins, DevOps
● CI pipelines💀
● CI servers💀💀💀

Fun family game:
● Imagine a thing at work you don’t have permission to

○ For example, production deploy
● Find a way to do this thing anyway

○ Forgotten legacy token or password stored somewhere?
○ Old secret committed and removed from git?
○ Abuse CI pipeline (replace repo with a backdoor)?

● (Don’t really do the thing though, you may be fired)

Privilege escalation

Principle of Least Privilege

Principle of least privilege

"The principle of least privilege (PoLP) is a security concept that
states users and applications should only have the minimum access

rights necessary to perform their tasks"

"Too many permissions = bad"

Principle of least privilege

"The principle of least privilege (PoLP) is a security concept that
states users and applications should only have the minimum access

rights necessary to perform their tasks"

"Too many permissions = bad"

"Too hard to get permissions = bad"

Principle of least privilege

"The principle of least privilege (PoLP) is a security concept that
states users and applications should only have the minimum access

rights necessary to perform their tasks"

● Too many
permissions

● The right thing to
do: report issue

● Actually: the work
needs to be done

"Too hard to get permissions = bad"

Principle of least privilege

"The principle of least privilege (PoLP) is a security concept that
states users and applications should only have the minimum access

rights necessary to perform their tasks"

● Not enough
permissions

● Should wait
● Actually: the work

needs to be done
a.k.a “Shadow IT”

● Not enough
permissions

● Nobody sees the
whole picture

● Except the attacker

"Not enough permissions = bad" too

Principle of least privilege

"The principle of least privilege (PoLP) is a security concept that
states users and applications should only have the minimum access

rights necessary to perform their tasks"

Application dev team

Infrastructure dev team

K8S devops team

Security team

We ����

Principle of least privilege

Sudo

(not a security boundary)(not a security boundary)

Windows UAC

Principle of least privilege

Seccomp Linux Capabilities

Principle of least privilege

Pledge Unshare

Principle of least privilege

Capability based security

cap(filesystem) cap(/var/log, ‘rw’) cap(/var/log/syslog, ‘r’)

cap(ambient)

Secure Defaults

Secure (service) defaults

❌Bind to 0.0.0.0 by default ✅ Bind to 127.0.0.1 by default

Secure (service) defaults

Secure (service) defaults

❌Bind to 0.0.0.0 by default

❌admin:admin default credentials

✅ Bind to 127.0.0.1 by default

✅ No default credentials (forced reset)

Secure (service) defaults

Secure (service) defaults

❌Bind to 0.0.0.0 by default

❌admin:admin default credentials

❌Block ports on firewall

✅ Bind to 127.0.0.1 by default

✅ No default credentials (forced reset)

✅ Open ports on firewall
(block everything by default)

Secure (service) defaults

❌Bind to 0.0.0.0 by default

❌admin:admin default credentials

❌Block ports on firewall

✅ Bind to 127.0.0.1 by default

✅ No default credentials (forced reset)

✅ Open ports on firewall
(block everything by default)

❌Fail close ✅ Fail open

Secure (service) defaults

Secure (service) defaults

Secure (service) defaults

Secure (code) defaults

sha256 HMACvs

from config import SECRET
def sign(username):
 data = {"user": username}
 raw_data = json.dumps(data).encode()
 signature = sha256(SECRET + raw_data)
 return signature + raw_data

from config import SECRET
def sign(username):
 data = {"user": username}
 raw_data = json.dumps(data).encode()
 signature = hmac(SECRET, raw_data).digest()
 return signature + raw_data

Secure (code) defaults

❌ sha256 HMACvs

from config import SECRET
def sign(username):
 data = {"user": username}
 raw_data = json.dumps(data).encode()
 signature = sha256(SECRET + raw_data)
 return signature + raw_data

from config import SECRET
def sign(username):
 data = {"user": username}
 raw_data = json.dumps(data).encode()
 signature = hmac(SECRET, raw_data).digest()
 return signature + raw_data

Secure (code) defaults

❌ sha256 ❓HMACvs

from config import SECRET
def sign(username):
 data = {"user": username}
 raw_data = json.dumps(data).encode()
 signature = sha256(SECRET + raw_data)
 return signature + raw_data

from config import SECRET
def sign(username):
 data = {"user": username}
 raw_data = json.dumps(data).encode()
 signature = hmac(SECRET, raw_data).digest()
 return signature + raw_data

Secure (code) defaults

❌ sha256 ❓HMACvs

from config import SECRET
def sign(username):
 data = {"user": username}
 raw_data = json.dumps(data).encode()
 signature = sha256(SECRET + raw_data)
 return signature + raw_data

from config import SECRET
def sign(username):
 data = {"user": username}
 raw_data = json.dumps(data).encode()
 signature = hmac(SECRET, raw_data).digest()
 return signature + raw_data

When designing signing API,
make sure there's no way to

use it incorrectly

Secure (code) defaults

❌ verify(anything) ✅ itsdangerous

Secure (code) defaults

❌ verify(anything) ✅ jwt

Types come in handy - make illegal state impossible to represent:
● name: Optional[str] vs name: str; has_name: bool
● { is_paid: bool, is_cancelled: bool }
● Non-nullable types
● Validating type wrappers instead of passing primitives

Also good for code correctness - if that's impossible to pass invalid
parameter to a function, then it will certainly never happen.

Secure (code) defaults

Conclusion

Agenda

Privilege escalation

Defense in Depth

Security through
obscurity

Secure Defaults

Principle of Least
Privilege

Threat ModellingIntroduction

Conclusion

Q&A
jaroslaw.jedynak@itsec.re

Images from flaticon.com, Wikipedia, freepik

