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Part 1
Security-first what?
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Once upon a time in the cyberspace

● ByBit Cryptocurrency exchange
● Funds stored in a cold wallet a multisig solution called Safe{Wallet}
● But then one day…
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Once upon a time in the cyberspace

app.safe.global JS
replaced with malicious code

Malicious transaction is initiated in ByBit
(instead of expected scheduled transaction)

Multisig transaction approved.
But what people saw was not what they signed.

ByBit Funds were diverted to attacker wallet

ByBit notices $1.5B is gone

Safe{Wallet} developer compromised



Part 2
Security-first mindset in practice



A security-first mindset is 
an approach where security 
is treated as a core priority 
from the very beginning, not 
something added on later. It 
means consistently asking 
“How could this be abused 
or fail?” at every decision 

point.



Build and operate systems assuming they will be attacked, misused, or fail.
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Threat Modelling

What to protect? From whom? How to attack it?
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Threat Modelling

Attack vectors Protected assets

User Data

Bank Account

Databases

Company website

Supply-Chain

Email

Insider threat Reputation
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● Publicly exposed, vulnerable website
● Website exploited, RCE obtained =>

○ Deface
○ Cryptominer
○ Proxy
○ Limited data leak

● Attacker gains access to the intranet =>
○ Severe data leak (internal shares, emails)
○ Privilege escalation opportunities

● DC server exploited, Domain Admin account obtained =>
○ Leak of all confidential data
○ All data ransomwared

Threat example
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Defense in depth case study
● Security audit for an accounting company
● Several domain-specific programs preinstalled for everyone
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Defense in depth: Asseco Płatnik

HKLM\Software\Wow6432Node\Asseco Poland SA\Płatnik\10.02.002\Baza

Asseco’s genius idea
Instead of API, just read the correct 

password from the database
and compare with user input Solution: Encrypt the password

Problem: Everyone can read the DB pass

❓❓❓ ❓



Defense in depth: Asseco Płatnik

HKLM\Software\Wow6432Node\Asseco Poland SA\Płatnik\10.02.002\Baza

sub swap($$) { $_ = shift; my $n = shift; s/(.{$n})(.{$n})/$2$1/g; return $_; }

my $enc = shift;
my $k = "lmnopqrstuvwxyz{";
my @pkey = ( swap($k, 8), swap(swap($k, 4), 1), swap(swap($k, 8), 1), swap($k, 1),
  swap($k, 4), swap($k, 2), swap(swap($k, 2), 1), swap(swap(swap($k, 4), 2), 1), );
my @order = (0,1,2,3,4,0,3,5,2,1,5,4,3,6,6,2,4,2,2,4,3,2,7,7,);

my $i = 0;
sub dec($$) {
    my $a = index $pkey[$order[$i % 24]], shift;
    my $b = index $pkey[$order[$i % 24]], shift;
    $i++;
    return chr hex sprintf "%x%x",$b,$a;
}

$enc =~ s/[^$k]//g; $enc =~ s/(.)(.)/dec($1,$2)/ge;
print "$enc\n";
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Defense in depth: Asseco Płatnik

🤡
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“Security last mindset”

● User needs to use the program
● Program need to know the password to connect to the database
● 2 + 2 = 4

● User knows password to some database user
● Database user must have access to "Users" table
● 2 + 2 = 4

● Passwords in the database are "encrypted"
● ???
● So called "security through obscurity"
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● In cryptography: Kerckhoffs' principle (precisely this case)
● Various kinds of obfuscation
● Non-standard SSH port
● http://my-company.com/admin-login-1a2f3f/
● Undocumented REST endpoints
● Certificate pinning
● C:\Users\Jarek\Desktop\old\backup\taxes2013\Hot MILF Sex.mp4
● Old polish ITSec meme: "głębokie ukrycie" ("deep hiding"?)

Security through obscurity



Devil’s advocate: How bad is that, really?

Security through obscurity



● Various kinds of obfuscation (⏰)
○ Waste reverse-engineer time
○ Stop less skilled attackers
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● Various kinds of obfuscation (⏰)
● Non-standard SSH port (🤖)

○ Defeat automated scanners
○ Avoid immediate exploit in case of a critical CVE
○ Same goes for VPN and other critical publicly open services

Security through obscurity



● Various kinds of obfuscation (⏰)
● Non-standard SSH port (🤖)
● http://my-company.com/admin-login-1a2f3f/ (🤖)

○ Especially good when used with wordpress
○ But not necessarily for custom projects and APIs

Security through obscurity



● Various kinds of obfuscation (⏰)
● Non-standard SSH port (🤖)
● http://my-company.com/admin-login-1a2f3f/ (🤖)
● Certificate pinning (⏰🤖)

○ Waste reverse-engineer time
○ Defeat automated sandboxes
○ Stop less skilled attackers

Security through obscurity



● Various kinds of obfuscation (⏰)
● Non-standard SSH port (🤖)
● http://my-company.com/admin-login-1a2f3f/ (🤖)
● Certificate pinning (⏰🤖)

Sometimes acceptable.
But not as the only security measure, and be aware of the tradeoffs.

Security through obscurity
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Privilege escalation

Asseco Płatnik user Database user Database admin

Security barrier breached

Least privileged    --->                                               ---> Most privileged
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C:\Program Files (x86)\Asseco Poland SA\Platnik\ASSECO.AKTUALIZUJ.PP.exe: Writable

AktualizujPP Windows Service: Executed as SYSTEM user

>runas /user:JaroslawJedynak cmd.exe

>powershell -Command "Start-Process cmd 
-Verb RunAs"



Privilege escalation

Windows user SYSTEM user Domain Admin

Security barrier breached

Least privileged    --->                                               ---> Most privileged
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Privilege escalation
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Privilege escalation

No security barrier breached

Linux user Linux user
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Privilege escalation

"John" Windows user "DbAdm" Window user Domain Admin

"SYSTEM" Windows user "web" database user "admin" database user

"root" server user "www-data" server user "John" email account



Privilege escalation

RCE vulnerability

"www-data" server user

"web" database user "admin" database user

"DbAdm" Window user

"root" server user

"SYSTEM" Windows userDomain Admin "John" Windows user
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● Developers, Admins, DevOps
● CI pipelines💀
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"Too hard to get permissions = bad"

Principle of least privilege

"The principle of least privilege (PoLP) is a security concept that 
states users and applications should only have the minimum access 

rights necessary to perform their tasks"

● Too many 
permissions

● The right thing to 
do: report issue

● Actually: the work 
needs to be done



"Too hard to get permissions = bad"

Principle of least privilege

"The principle of least privilege (PoLP) is a security concept that 
states users and applications should only have the minimum access 

rights necessary to perform their tasks"

● Not enough 
permissions

● Should wait
● Actually: the work 

needs to be done
a.k.a “Shadow IT”



● Not enough 
permissions

● Nobody sees the 
whole picture

● Except the attacker

"Not enough permissions = bad" too

Principle of least privilege

"The principle of least privilege (PoLP) is a security concept that 
states users and applications should only have the minimum access 

rights necessary to perform their tasks"

Application dev team

Infrastructure dev team

K8S devops team

Security team

We ����



Principle of least privilege

Sudo

(not a security boundary)(not a security boundary)

Windows UAC



Principle of least privilege

Seccomp Linux Capabilities



Principle of least privilege

Pledge Unshare



Principle of least privilege

Capability based security

cap(filesystem) cap(/var/log, ‘rw’) cap(/var/log/syslog, ‘r’)

cap(ambient)



Secure Defaults



Secure (service) defaults

❌Bind to 0.0.0.0 by default ✅ Bind to 127.0.0.1 by default
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Secure (service) defaults

❌Bind to 0.0.0.0 by default

❌admin:admin default credentials

✅ Bind to 127.0.0.1 by default

✅ No default credentials (forced reset)
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Secure (service) defaults

❌Bind to 0.0.0.0 by default

❌admin:admin default credentials

❌Block ports on firewall

✅ Bind to 127.0.0.1 by default

✅ No default credentials (forced reset)

✅ Open ports on firewall
(block everything by default)



Secure (service) defaults

❌Bind to 0.0.0.0 by default

❌admin:admin default credentials

❌Block ports on firewall

✅ Bind to 127.0.0.1 by default

✅ No default credentials (forced reset)

✅ Open ports on firewall
(block everything by default)

❌Fail close ✅ Fail open
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Secure (code) defaults

sha256 HMACvs

from config import SECRET
def sign(username):
    data = {"user": username}
    raw_data = json.dumps(data).encode()
    signature = sha256(SECRET + raw_data)
    return signature + raw_data

from config import SECRET
def sign(username):
    data = {"user": username}
    raw_data = json.dumps(data).encode()
    signature = hmac(SECRET, raw_data).digest()
    return signature + raw_data
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❌ sha256 ❓HMACvs

from config import SECRET
def sign(username):
    data = {"user": username}
    raw_data = json.dumps(data).encode()
    signature = sha256(SECRET + raw_data)
    return signature + raw_data
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Secure (code) defaults

❌ sha256 ❓HMACvs

from config import SECRET
def sign(username):
    data = {"user": username}
    raw_data = json.dumps(data).encode()
    signature = sha256(SECRET + raw_data)
    return signature + raw_data

from config import SECRET
def sign(username):
    data = {"user": username}
    raw_data = json.dumps(data).encode()
    signature = hmac(SECRET, raw_data).digest()
    return signature + raw_data

When designing signing API,
make sure there's no way to 

use it incorrectly



Secure (code) defaults

❌ verify(anything) ✅ itsdangerous



Secure (code) defaults

❌ verify(anything) ✅ jwt



Types come in handy - make illegal state impossible to represent:
● name: Optional[str] vs name: str; has_name: bool
● { is_paid: bool, is_cancelled: bool }
● Non-nullable types
● Validating type wrappers instead of passing primitives

Also good for code correctness - if that's impossible to pass invalid 
parameter to a function, then it will certainly never happen.

Secure (code) defaults



Conclusion
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